Формулы для расчета силы и мощности электрического тока

Правильно рассчитать силу тока необходимо для многих работ, связанных с электропроводкой и проектированием схемотехнических и бытовых приборов. Ошибки или пренебрежение такими расчётами могут иметь серьезные последствия, так как от силы и мощности тока зависит тип прокладываемого кабеля, правильный выбор которого определяет пожарную безопасность и экономическую целесообразность.

Принципы расчета тока

Знать в амперах силу тока, протекающего в цепи, важно для расчета сечения провода, которым прокладывается проводка, и выбора автомата, предохраняющего сеть от перегрузок. Большее, чем нужно, значение сечения вызывает дополнительные затраты, меньшее — вызовет перегрев электропроводки, что чревато расплавлением изоляции кабеля и пожаром.

Правильный выбор автомата также важен, так как большой запас по току окажется бесполезен, если выключатель сработает поздно, и оборудование успеет выйти из строя, а слишком маленький запас вызовет очень частое срабатывание аварийного отключения при повышении потребляемой мощности в допустимых пределах.

По закону Ома можно рассчитать ток как отношение напряжения между двумя точками к сопротивлению этого участка цепи (сопротивление самого провода). Этот параметр у провода зависит от его материала, длины и сечения. При использовании стандартных материалов (алюминий или медь) единственным параметром, на который можно влиять остается сечение проводника. А он зависит от предполагаемого протекающего тока.

Сила тока в розетке на 220 В обычно не превышает 6 ампер. Это значит, что суммарная мощность подключенных к розетке электроприборов не должна превышать 2019 Вт. В противном случае требуется укладка особых проводов с увеличенным сечением.

Вычисление мощности

Формула мощности электрического тока и принцип расчета будут отличаться при рассмотрении цепей постоянного и переменного токов. Постоянный ток используется в бортовой сети автомобилей, портативных устройствах, питающем напряжении троллейбусов. Переменный — применяется в электрической проводке зданий, мощных электродвигателях и генераторах.

При постоянном напряжении

Чтобы предположить значение тока, нужно знать мощность используемых потребителей электроэнергии. Расчет тока по мощности производится из этой величины по формуле:

I = P / U,

где I — сила тока, U — напряжение в сети, P — суммарная мощность, которую будут потреблять подключенные устройства.

Для примера можно посчитать ток питания электродвигателя троллейбуса 150 кВт. В троллейбусной сети используется постоянное напряжение 600 В. Соответственно, при вычислении тока через указанную формулу, получается значение, равное 250 ампер. Для таких больших значений в троллейбусной сети используются специальные провода.

Существует специальные таблицы, позволяющие по известному току сразу найти сечение медного или алюминиевого проводника. Это же значение можно вычислить в калькуляторе онлайн. Необходимо ввести используемый материал, ток или мощность потребителя — и сервис рассчитает оптимальное сечение. В стандартных проводках зданий используются сечения 1,5 квадратных миллиметра для сетей освещения и 2,5 кв. мм. для розеток.

При переменном напряжении

Для питания электрических сетей домашних и офисных зданий используется переменное напряжение. Его применение обосновано несколькими причинами:

  1. Меньшие затраты при передаче по ЛЭП;
  2. Простое создание повышающих и понижающих напряжение устройств;
  3. Отсутствие полярности.

А для питания устройств постоянного тока применяются разного рода выпрямители.

Мощность переменного тока сильно зависит от параметров питаемой нагрузки. Поэтому формула электрической мощности в переменных сетях приобретает вид:

P = U ⋅ I ⋅ cosφ,

где cosφ определяет характер нагрузки.

В таких цепях это активная мощность, то есть превращающаяся при работе в другие виды энергии: электромагнитную и тепловую.

Для активного сопротивления, то есть обычных резисторов, cosφ = 1. Чем больше реактивная составляющая в цепи, то есть больше элементов имеют емкостное или индуктивное сопротивление, тем меньше будет cosφ. Коэффициент cosφ для большинства электроприборов имеет значение 0,95, исключение составляют только сварочные аппараты и электродвигатели, имеющие высокую индуктивную нагрузку.

Существует и реактивная мощность. Она определяет энергию, подаваемую с источника питания в реактивные элементы, а затем возвращаемая этими элементами обратно. Формула мощности тока для реактивных цепей имеет вид:

P = U ⋅ I ⋅ sinφ.

Здесь sinφ характеризует вклад в полную мощность индуктивных и конденсаторных элементов. Измеряется реактивная мощность в таких единицах, как вар (вольт-ампер реактивный).

В промышленных электросетях распространены трехфазные системы. Их преимущества важны для индустрии:

  • Более экономная передача электричества на дальние расстояния;
  • Уменьшение затрат при создании электродвигателей 3-х фазной системы;
  • Равномерность механической нагрузки на электрогенератор.

Особенностью трехфазных систем электрического тока является то, что напряжение в этих системах используется повышенное, равное 380 В. При распределенной по трем ветвям нагрузке это приводит к уменьшению рабочего тока по отношению к однофазной системе, в которой рабочим напряжением принято 220 В. Формула для расчета мощности в трехфазной цепи будет иметь следующий вид:

P = 1,73 ⋅ I ⋅ U ⋅ cosφ.

Повышающий коэффициент 1,73 здесь связан с распределённой нагрузкой и меньшим влиянием реактивной составляющей в таких системах.

Рассчитать значение переменного тока, зная потребляемую мощность, легко по указанным формулам. Например, для однофазной сети:

I = P /(U ⋅ cosφ).

Выбор электроприборов

Чтобы узнать, какой бытовой прибор подойдет для электропроводки дома, а для какого лучше использовать промышленную, нужно обратить внимание на его мощность. Этот параметр всегда написан в руководстве по эксплуатации или технических характеристиках устройства.

Стоит насторожиться, если мощность указана больше 1,5 кВт, так как для таких приборов нужно использовать увеличенное сечение проводов питающей сети. Обычно домашние электроприборы имеют меньшую мощность.

Исключение могут составить стиральные машины, электроплиты, некоторые виды пылесосов. Дома с электроплитами всегда имеют для них отдельную проводку, а для питания стиральной машины лучше протянуть отдельный провод увеличенного сечения.

Далее следует определиться с выбором автоматического выключателя для групп потребителей электротока. Его следует выбирать именно на группу, с целью экономии места в распределительном щитке, и чтобы быть более свободным в подключении приборов к разным розеткам. Какие группы лучше выбрать:

  • Электроплита;
  • Стиральная машина и водонагреватель;
  • Остальные розетки и освещение.

В домах с электроплитами наиболее высоким потреблением будет обладать именно плита. Ее мощность оценивается в 10 кВт, что при стандартном напряжении 220 В означает ток потребления 45 А, cosφ здесь равен 1. На электроплиту нужен отдельный автомат, поэтому здесь он выбирается его на 50 ампер.

Большим токопотреблением отличается также и стиральная машина. Стандартная стиралка потребляет 2,5 кВт, что соответствует 12,5 А. Несмотря на cosφ = 0,8 у электродвигателя стиральной машины, в ней большое количество электроники, поэтому для расчета берем cosφ = 1. Еще большая мощность у водонагревателя — до 8 кВт. Если предполагается использовать их одновременно со стиралкой — стоит брать автомат повышенного ампеража, так как суммарная мощность двух этих приборов составит 10,5 кВт, то есть нужен еще один автомат на 50 А. А лучше сделать два отдельных автомата: 40 А — на водонагреватель, и 15 А — на стиральную машину.

Остальные розетки и освещение можно определить в отдельную группу. Их общее энергопотребление оценивается в 1,5 кВт, то есть автомата на 10 А будет достаточно для третьей группы.

Приборы для измерения величин

Измерения электротехнических величин производятся специальными устройствами. Ток измеряется амперметром, напряжение — вольтметром, а мощность можно померить ваттметром, либо вычислить ее по формуле из значений первых двух значений.

С помощью онлайн-калькулятора можно вычислить не только ток при известной мощности потребителей, но и сечение нужных для электропроводки проводов.

Вычисление силы тока и параметров проводки по мощности потребителей электроэнергии — очень важная часть проектирования здания или квартиры, поэтому нужно подойти к этому взвешенно и ответственно.

Для того, чтобы обеспечить безопасность при эксплуатации промышленных и бытовых электрических приборов, необходимо правильно вычислить сечение питающей проводки и кабеля. Ошибочный выбор сечения жил кабеля может привести из-за короткого замыкания к возгоранию проводки и к возникновению пожара в здании.

Что такое мощность (Р) электротока

Электрическая мощность является физической величиной, характеризующей скорость преобразования или передачи электрической энергии. Единицей измерения по Международной системе единиц (СИ) является ватт, в нашей стране обозначается Вт, международное обозначение — W.

Что влияет на мощность тока

На мощность (Р) влияет величина силы тока и величина приложенного напряжения. Расчет параметров электроэнергии выполняется еще на стадии проектирования электрических сетей объекта. Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители. Для расчетов силы электротока используется значения напряжения сети и полной нагрузки электрических приборов. В соответствии с величиной силы электротока выбирается сечение жил кабелей и проводов.

Отличия мощности при постоянном и переменном напряжении

Ведем обозначения электрических величин, которые приняты в нашей стране:

  • Р − активная мощность, измеряется в ваттах, обозначается Вт;
  • Q − реактивная мощность, измеряется в вольт амперах реактивных, обозначается ВАр;
  • S − полная мощность, измеряется в вольт амперах, обозначается ВА;
  • U − напряжение, измеряется в вольтах, обозначается ВА;
  • I − ток, измеряется в амперах, обозначается А;
  • R − сопротивление, измеряется в омах, обозначается Ом.

Назовем основные отличия P на постоянном и Q на переменном электротоке. Расчет P на постоянном электротоке получается наиболее простым. Для участков электрической цепи справедлив закон Ома. В этом законе задействованы только величина приложенного U (напряжения) и величина сопротивления R.

Расчет S (полной мощности) на переменном электротоке производится несколько сложнее. Кроме P, имеется Q и вводится понятие коэффициента мощности. Алгебраически складывая активную P и реактивную Q, получают общую S.

По какой формуле вычисляется

Расчет силы тока по мощности и напряжению в сети постоянного тока

Для расчета силы I (тока), надо величину U (напряжения) разделить на величину сопротивления.

Расчет силы тока по мощности и напряжению:

I = U ÷ R

Измеряется в амперах.

Для такого случая электрическую Р (активную мощность) можно посчитать как произведение силы электрического I на величину U.

Формула расчета мощности по току и напряжению:

P = U × I

Все компоненты в этих двух формулах характерны для постоянного электротока и их называют активными.

Исходя из этих двух формул, можно вывести также еще две формулы, по которым можно узнавать P:

P = I2 × R

P = U2 ÷ R

Однофазные нагрузки

В однофазных сетях переменного электротока требуется произвести вычисление отдельно для Р и Q нагрузки, затем надо при помощи векторного исчисления их сложить.

S = P + Q

В скалярном виде это будет выглядеть так:

S = √P2 + Q2

В результате расчет P, Q, S имеет вид прямоугольного треугольника. Два катета этого треугольника представляют собой P и Q составляющие, а гипотенуза — их алгебраическую сумму.

S измеряется в вольт-амперах (ВА), Q измеряется в вольт-амперах-реактивных (ВАр), Р измеряется в ваттах (Вт).

Зная величины катетов для треугольников, можно рассчитать коэффициент мощности (cos φ). Как это сделать, показано на изображении треугольника.

Расчет в трехфазной сети

Переменный I (ток) отличается от постоянного по всем параметрам, особенно наличием нескольких фаз. Расчет P в трехфазной нагрузке необходим для правильного определения характеристик подключаемой нагрузки. Трехфазные сети широко применяются в связи с удобством эксплуатации и малыми материальными затратами.

Трехфазные цепи могут соединяться двумя способами – звездой и треугольником. На всех схемах фазы обозначают символами А, В, С. Нейтральный провод обозначают символом N.

При соединении звездой различают два вида U (напряжения) – фазное и линейное. Фазное U определяется как U между фазой и нейтральным проводом. Линейное U определяется как U между двумя фазами.

Эти два U связаны между собой соотношением:

UЛ = UФ × √3

Линейные и фазные электротоки при соединении звездой равны друг другу: IЛ = IФ

Форма расчета S при соединении звездой:

S = SA + SB + SC = 3 × U × I

Активная P:

Р = 3 × Uф × Iф × cosφ

Реактивная Q:

Q = √3 × Uф × Iф × sinφ.

При соединении треугольником фазное и линейное U равны друг другу: UЛ = UФ

Линейный I при соединении треугольником определяется по формуле:

IЛ = IФ × √3

Формулы мощности электрического тока при соединении треугольником:

  • S = 3 × Sф = √3 × Uф × Iф;
  • Р = √3 × Uф × Iф × cosφ;
  • Q = √3 × Uф × Iф × sinφ.

Средняя P в активной нагрузке

В электрических сетях P измеряют при помощи специального прибора – ваттметра. Схемы подключения находятся в зависимости от способа подключения нагрузки.

При симметричной нагрузке P измеряется в одной фазе, а полученный результат умножают на три. В случае несимметричной нагрузки для измерения потребуется три прибора.

Параметры P электросети или установки являются важными данными электрического прибора. Данные по потреблению P активного типа передаются за определенный период времени, то есть передается средняя потребляемая P за расчетный период времени.

Подбор номинала автоматического выключателя

Автоматические выключатели защищают электрические аппараты от токов короткого замыкания и перегрузок.

При аварийном режиме они обесточивают защищаемую цепь при помощи теплового или электромагнитного механизма расцепления.

Тепловой расцепитель состоит из биметаллической пластины с различными коэффициентами теплового расширения. Если номинальный ток превышен, пластина изгибается и приводит в действие механизм расцепления.

У электромагнитного расцепителя имеется соленоид с подвижным сердечником. При превышении заданного I, в катушке увеличивается электромагнитное поле, сердечник втягивается в катушку соленоида, в результате чего срабатывает механизм расцепления.

Минимальный I, при котором тепловой расцепитель должен сработать, устанавливается с помощью регулировочного винта.

Ток срабатывания у электромагнитного расцепителя при коротком замыкании равен произведению установленного срабатывания на номинальный электроток расцепителя.

Видео о законах электротехники

Из следующего видео можно узнать, что такое электричество, мощность электрического тока. Даны примеры практического применения законов электротехники.

Мощность электрического тока — это отношение произведенной им работы ко времени в течение которого совершена работа.

Если:
P — мощность электрического тока (Вт),
W — работа электрического тока (Дж = Вт·с),
U — напряжение (В),
I — сила тока (A),
R — сопротивление цепи (Ом),
t — время протекания тока (c),
То:

Мощность электрического тока через напряжение и ток

\[ P = \frac{W}{t} = UI \]

Мощность электрического тока — это отношение произведенной им работы ко времени в течение которого совершена работа.

Если:
P — мощность электрического тока (Вт),
W — работа электрического тока (Дж = Вт·с),
U — напряжение (В),
I — сила тока (A),
R — сопротивление цепи (Ом),
t — время протекания тока (c),
То:

Мощность электрического тока через напряжение и ток

\[ P = \frac{W}{t} = UI \]

Мощность электрического тока через напряжение и сопротивление

\[ P = \frac{U^2}{R} \]

Мощность электрического тока через ток и сопротивление

\[ P = I^2 R \]

Мощность электрического тока через напряжение и сопротивление

\[ P = \frac{U^2}{R} \]

Мощность электрического тока через ток и сопротивление

\[ P = I^2 R \]

В помощь студенту

Мощность электрического тока

стр. 613