Проверка мультиметром стабилизатора tl431 и схема включения

Про светодиоды уже написал достаточно много, теперь читатели не знают как их правильно и питать, чтобы они не сгорели раньше положенного срока. Теперь продолжаю ускоренно пополнять раздел блоков питания, стабилизаторов  напряжения и преобразователей тока.

В десятку популярных электронных компонентов входит регулируемый стабилизатор TL431 и его брат  ШИМ контроллер TL494. В источниках питания он выступает в качестве «программируемого источника опорного напряжения, схема включения очень простая.  В импульсных блоках питания на ТЛ431 бывает реализована обратная связь и опорное напряжение.

Ознакомитесь с характеристикам и даташитами других ИМС применяемых для питания LM317, TL431, LM358, LM494.

Технические характеристики

Вид корпусов ТЛ431

Широкое применение  получила благодаря  крутости своих технических характеристик и стабильностью параметров при разных температурах. Частично функционал похож на известную LM317, только она работает на малой силе тока и предназначена для регулировки. Все особенности и типовые схемы включения указаны в datasheet на русском языке. Аналог TL431 будет отечественная КР142ЕН19 и импортная К1156ЕР5, их параметры очень похожи. Других аналогов особо не встречал.

Основные характеристики:

  1. ток на выходе до 100мА;
  2. напряжение на выходе от 2,5 до 36V;
  3. мощность 0,2W;
  4. температурный диапазон TL431C от 0° до 70°;
  5. для TL431A от -40° до +85°;
  6. цена от 28руб за 1 штуку.

Подробные характеристики и режимы работы указаны  в даташите на русском в конце этой страницы или можно скачать tl431-datasheet-russian.pdf

Пример использования на плате

Стабильность параметров зависит от температуры окружающей среды, она очень стабильная, шумов на выходе мало и напряжение плавает +/- 0,005В по даташиту. Кроме бытовой модификации TL431C от 0° до 70°  выпускается вариант с более широким температурным диапазоном TL431A от -40° до 85°. Выбранный вариант зависит от назначения устройства. Аналоги имеют совершенно другие температурные параметры.

Проверить исправность микросхемы мультиметром нельзя, так как она состоит из 10 транзисторов. Для этого необходимо собрать тестовую схему включения, по которой можно определить степень исправности, не всегда элемент полностью выходит из строя, может просто подгореть.

Схемы включения TL431

Рабочие характеристики стабилизатора задаются двумя резисторами. Варианты использования данной микросхемы могут быть различные, но максимальное распространение она получила в блоках питания с регулируемым и фиксированным напряжением. Часто применяется в  стабилизаторах тока в зарядных USB устройствах, промышленные блоки питания,  принтеров  и другой бытовой техники.

TL431 есть практически в любом блоке питания ATX от компьютера, позаимствовать можно из него. Силовые элементы с радиаторами, диодными мостами тоже там есть.

На данной микросхеме реализовано множество схем зарядных устройств для литиевых аккумуляторов. Выпускаются радиоконструкторы для самостоятельной сборки своими руками. Количество вариантов применение очень большое, хорошие схемы можно найти на зарубежных сайтах.

Цоколёвка TL431

Как показывает практика, цоколевка TL431 может быть разной, и зависит от производителя. На изображении показана распиновка  из даташита Texas Instruments. Если вы её извлекаете из какой нибудь готовой платы, то цоколевку ножек можно увидеть по самой плате.

Datasheet на русском

Многие радиолюбители не очень хорошо знают английский язык и технические термины. Я достаточно неплохой владею языком предполагаемого противника, но при разработке меня всё равно напрягает постоянное вспоминание перевода электрических терминов на русский.  Перевод  TL431 datasheet на русском сделал наш коллега, которого и благодарим.

Графики электрических характеристик

Стабилизаторы напряжения – это электронные приборы со сложным устройством, а значит, они имеют разные накладки в функционировании и возможные неисправности. Существуют разные казусы в их работе, которые связаны с наибольшими нагрузками, а есть и настоящие поломки. Эти понятия следует отличать, для чего существует несколько советов.

В первую очередь, рассмотрим, чем можно произвести качественную проверку работы этого устройства. Наиболее верным методом контроля качества устройства является обычный вольтметр, которым можно измерить напряжение в сети квартиры, а также напряжение на выходе прибора. В домашней розетке напряжение способно колебаться в интервале 170-240 вольт, а на выходе стабилизирующего прибора оно должно равняться 220 вольтам.

Но простым методом проверки действия стабилизатора напряжения пользуются далеко не все, так как доверяют данным по индикатору. Но это доверие не всегда оправдывается, а иногда на китайских приборах цифровой индикатор просто подключен непосредственно к реле. В этом случае реле имеют достаточно большой шаг, и он всегда будет показывать 220 В. По факту на выходе будет совсем другое значение.

Как проверить электрический стабилизатор

Эта проверка выполняется довольно просто. Для этого необходимо взять следующие устройства:

  • Две настольные лампы.
  • Стабилизатор.
  • Электрическую плитку.
  • Удлинитель питания с 3-мя гнездами.

Порядок проверки:

  1. Вставить вилку удлинителя в домашнюю розетку.
  2. Стабилизатор подключить к удлинителю.
  3. К стабилизатору подключить настольную лампу на 60 Вт.
  4. Подключить электрическую плитку к удлинителю.

Если стабилизатор функционирует нормально, то работа плитки не повлияет на свет лампочки, а ели лампу подключить напрямую к удлинителю, то при включении плитки свет станет слабее. Это объясняется тем, что мощный потребитель в виде плитки значительно снижает напряжение и лампа, подключенная к сети до прибора, станет выдавать меньше света. Но лампа, питающаяся после стабилизатора напряжения, не будет реагировать на повышение нагрузки.

Случается, и такая ситуация, когда люди не понимают работу стабилизатора, и сетуют на его плохую работу, хотя дело совершенно не в этом. Это получается так, что стабилизатор обесточивает нагрузку неожиданно, при стирке белья в машине автомате. Но в этом нет никаких неисправностей. Стиральная машина-автомат является мощным потребителем электрической энергии, но ее мощность распределяется неравномерно. При нагревании воды мощность может достигать до 5 кВт, а при обычной стирке уменьшается до 2 кВт. Из уроков физики средней школы известно, что если на входе трансформатора уменьшить напряжение, а на выходе увеличить напряжение, то выходная мощность также значительно снизится. Смотрите статью про стабилизатор для стиральной машины.

Поэтому может возникнуть такая ситуация, что при уменьшении напряжения на выходе стабилизатора напряжения мощности будет достаточно для вращения барабана, но недостаточно для нагревания воды. В этом случае необходимо выключить все лишние потребители и налить в машину, отдельно нагретую воду.

Проверка стабилитрона мультиметром

Такой электронный элемент, как стабилитрон, внешне похож на диод, но использование его в радиотехнике несколько другое. Чаще всего стабилитроны применяют для стабилизации питания в маломощных схемах. Они включаются по параллельной схеме к нагрузке. При работе с чрезмерно высоким напряжением стабилитрон через себя пропускает ток, сбрасывая напряжение. Эти элементы не способны работать при больших токах, так как они начинают греться, что приводит к тепловому пробою.

Порядок проверки

Весь процесс сводится к тому, как проверяют диоды. Это делается обычным мультиметром в режиме проверки сопротивления или диода. Исправный стабилитрон может проводить ток в одном направлении, по аналогии с диодом.

Рассмотрим пример проверки двух стабилитронов КС191У и Д814А, один из них неисправный.

Сначала проверяем диод Д814А. При этом стабилитрон по аналогии с диодом пропускает ток в одну сторону.

Теперь проверяем стабилитрон КС191У. Он заведомо неисправен, так как совсем не может пропускать ток.

Проверка микросхемы стабилизатора

Требуется собрать стабилизирующие цепи для питания устройства на микроконтроллере PIC 16F 628, который нормально работает от 5 В. Для этого берем микросхему PJ 7805, и на ее базе по схеме из даташита выполняем сборку. Подается напряжение, а на выходе получается 4,9 В. Этого хватает, но упрямство берет верх.

Достали коробку с интегральными стабилизаторами, и будем измерять их параметры. Чтобы не сделать ошибки, кладем перед собой схему. Но при проверке микросхемы оказалось, что на выходе всего 4,86 В. Здесь необходим какой-либо пробник, чем и займемся.

Схема пробника для проверки микросхемы КРЕН

Эта схема уступает предыдущей компоновке.

Конденсатор С1 удаляет генерацию при ступенчатом подключении входного напряжения, а емкость С2 предназначена для защиты от импульсных помех. Величину ее берем 100 микрофарад, напряжение по величине стабилизатора напряжения. Диод 1N 2019 не дает возможность конденсатору разрядиться. Входное напряжение стабилизатора должно превышать напряжение выхода на 2,5 В. Нагрузку следует выбирать в соответствии с тестируемым стабилизатором.

Остальные элементы пробника выглядят следующим образом:

Контактные площадки стали местом монтажа элементов схемы. Корпус получился компактным.

На корпусе установили кнопку питания для удобства пользования. Штыревой контакт пришлось доработать путем изгибания.

На этом пробник готов. Он является своеобразной приставкой к мультиметру. Вставляем в гнезда штыри пробника, границу измерения устанавливаем на 20 В, провода соединяем с блоком питания, регулируем напряжение на 15 В и нажимаем кнопку питания на пробнике. Прибор сработал, на экране отображается 9,91 вольта.

Как проверить выходное напряжение стабилизатора?

TL 431 это программируемый шунтирующий регулятор напряжения. Хотя, эта интегральная схема начала выпускаться в конце 70-х она до сих пор не сдаёт своих позиций на рынке и пользуется популярностью среди радиолюбителей и крупных производителей электротехнического оборудования. На плате этого программируемого стабилизатора находится фоторезистор, датчик измерения сопротивления и терморезистор. TL 431 повсеместно используются в самых разных электрических приборах бытовой и производственной техники. Чаще всего этот интегральный стабилитрон можно встретить в блоках питания компьютеров, телевизоров, принтеров и зарядок для литий-ионных аккумуляторов телефонов.

TL 431 интегральный стабилитрон

Основные характеристики программируемого источника опорного напряжения TL 431

  • ​ Номинальное рабочее напряжение на выходе от 2,5 до 36 В;
  • Ток на выходе до 100 мА;
  • Мощность 0,2 Ватт;
  • Диапазон рабочей температуры для TL 431C от 0° до 70°;
  • Диапазон рабочей температуры для TL 431A от -40° до +85°.

Точность интегральной схемы TL 431 указывается шестой буквой в обозначении:

  • Точность без буквы – 2%;
  • Буква А – 1%;
  • Буква В – 0, 5%.

Столь широкое его применения обусловлено низкой ценой, универсальным форм-фактором, надёжностью, и хорошей устойчивостью к агрессивным факторам внешней среды. Но также следует отметить точность работы данного регулятора напряжения. Это позволило ему занять нишу в устройствах микроэлектроники.

Основное предназначение TL 431 стабилизировать опорное напряжение в цепи. При условии, когда напряжение на входе источника ниже номинального опорного напряжения, в программируемом модуле транзистор будет закрыт и проходящий между катодом и анодом ток не будет превышать 1 мА. В случае, когда выходное напряжение станет превышать запрограммированный уровень, транзистор будет открыт и электрический ток сможет свободно проходит от катода к аноду.

Схема включения TL 431

В зависимости от рабочего напряжения устройства схема подключения будет состоять из одноступенчатого преобразователя и расширителя (для устройств 2,48 В.) или модулятора небольшой ёмкости (для устройств 3.3 В). А также чтобы снизить риск короткого замыкания, в схему устанавливается предохранитель, как правило, за стабилитроном. На физическое подключение оказывает влияние форм-фактор устройства, в котором будет находиться схема TL 431, и условия окружающей среды (в основном температура).

Стабилизатор на основе TL 431

Простейшим стабилизатором на основе TL 431 является параметрический стабилизатор. Для этого в схему нужно включить два резистора R 1, R 2 через которые можно задавать выходное напряжение для TL 431 по формуле: U вых= Vref (1 + R 1/ R 2). Как видно из формулы здесь напряжение на выходе будет прямо пропорционально отношению R 1 к R 2. Интегральная схема будет держать напряжение на уровне 2,5 В. Для резистора R 1 выходное значение рассчитывается так: R 1= R 2 (U вых/ Vref – 1).

Эта схема стабилизатора, как правило, используется в блоках питания с фиксированным или регулируемым напряжением. Такие стабилизаторы напряжения на TL 431 можно обнаружить в принтерах, плоттерах, и промышленных блоках питания. Если необходимо высчитать напряжение для фиксированных источников питания, то используем формулу Vo = (1 + R 1/ R 2) Vref.

Временное реле

Прецизионные характеристики TL 431 позволяют использовать его не совсем по «прямому» назначению. Из-за того, что входной ток этого регулируемого стабилизатора составляет от 2 до 4 мкА, то используя данную микросхему можно собрать временное реле. Роль таймера в нём будет исполнять R1 который начнёт постепенно заряжаться после размыкания контактов S 1 C 1. Когда напряжение на выходе стабилизатора достигнет 2,5 В, транзистор DA1 будет открыт, через светодиоды оптопары PC 817 начёт проходить ток, а открытый фоторезистор замкнёт цепь.

Термостабильный стабилизатор на основе TL 431

Технические характеристики TL 431 позволяют создавать на его основе термостабильные стабилизаторы тока. В которых резистор R2 выполняет роль шунта обратной связи, на нём постоянно поддерживается значение 2,5 В. В результате значение тока на нагрузке будет рассчитываться по формуле Iн=2,5/R2.

Цоколёвка и проверка исправности TL 431

Форм-фактор TL 431 и его цоколёвка будет зависеть от производителя. Встречаются варианты в старых корпусах TO -92 и новых SOT-23. Не стоит забывать про отечественный аналог: КР142ЕН19А тоже широко распространённый на рынке. В большинстве случаев цоколёвка нанесена непосредственно на плату. Однако не все производители так поступают, и в некоторых случаях вам придётся искать информацию по пинам в техпаспорте того или иного устройства.

TL 431 является интегральной схемой и состоит из 10 транзисторов. Из-за этого проверить её мультиметром невозможно. Для проверки исправности микросхемы TL 431 нужно использовать тестовую схему. Конечно, часто нет смысла искать перегоревший элемент и проще заменить схему целиком.

Программы расчёта для TL 431

В интернете существует множество сайтов, где вы сможете скачать программы-калькуляторы для расчёта параметров напряжения и силы тока. В них можно указывать типы резисторов, конденсаторов, микросхем и прочих составных частей схемы. TL 431 калькуляторы также бывают онлайн, они по функционалу проигрывают устанавливаемым программам, но если вам нужно исключительно входные/выходные и максимальные значения схемы, то они справятся с этой задачей.