Технология плазменной резки металла, виды плазмотронов

Принцип работы плазмотрона – примеры устройства, варианты конструкции и принцип действия

История плазмотрона берет свое начало с середины прошлого века. Производство тугоплавких металлов, набиравшее в то время обороты, потребовало особой технологии обработки. Еще одним фактором, послужившим началу выпуска устройств, стала потребность в мощном источнике света и тепла. Чтобы ответить на вопрос, какой плазмотрон лучше, следует сначала разобраться с особенностями этого технического прибора, рассмотреть его разновидности.

Плазмотрон: общие черты

Плазмотрон представляет собой особое техническое устройство, благодаря которому электрический ток преобразуется в плазму, а последняя служит для резки металлических материалов разной толщины. К особенностям современных приборов относятся:

  • возможность получения высоких температурных показателей, добиться которых невозможно при помощи обычного топлива;
  • простота управления и регулировки (настройка пуска, остановки и мощности);
  • высокая степень надежности и компактные размеры.

Элементы прибора

Устройство плазмотрона представлено таким образом, чтобы обеспечивать резку металлов, относящихся к классу тугоплавких. Электрод (катод) имеет специальную циркониевую или гафниевую вставку. Использование указанных металлов при высоких температурах позволяет добиться эффекта выбивания электронов с их поверхности (термоэлектронная эмиссия).

Сопло – еще один расходный элемент плазмотрона, который всегда изолируется от катода. Прибор также оснащен механизмом для закручивания газа, образующего плазму.

Расходники способны функционировать в течение одной 8-часовой рабочей смены, если речь идет об обработке металла толщиной до 1 см. Далее они подлежат замене, причем последнюю желательно проводить одновременно для катода и сопла.

При несоблюдении сроков замены качество получаемого реза значительно ухудшается, могут появиться волны или дать о себе знать эффект реза под углом. Если гафниевая или циркониевая вставка выгорят более чем на 2 мм, то электрод пригорит. Следствием станет значительный перегрев устройства.

Чтобы расплавленный обрабатываемый материал не повредил элементы плазмотрона, его оснащают защитным кожухом. Регулярный демонтаж и чистка кожуха – залог долгой и качественной работы всего прибора. При несоблюдении элементарных условий эксплуатации можно в скором времени добиться серьезной поломки плазмореза. Не менее важно чистить и другие элементы.

Разновидности плазмотронов

Весь спектр современных технических приборов для резки металлов можно поделить на три класса:

  • плазмотроны на электрической дуге;
  • высокочастотные плазморезы;
  • комбинированные устройства.

Чтобы понять особенности работы каждого вида плазмотрона из обозначенных классов, следует рассмотреть их по отдельности.

Электродуговые плазмотроны

Все приборы этого класса оснащаются анодом и катодом, которые подключаются к источнику постоянного тока. Роль хладагента выполняет обычная вода, циркулирующая по специальным каналам. На рынке можно встретить устройства с электролитическим электродом. Последний также может вращаться.

Высокочастотные плазморезы

Особенностью приборов данного класса является отсутствие электродов, поскольку связь с питающим источником осуществляется благодаря индуктивному (или емкостному) принципу. Соответственно, плазматроны делятся на индукционные и емкостные.

Принцип работы плазмотронов, принадлежащих к классу высокочастотных устройств, подразумевает выполнение камеры, где происходит разряд, из не проводящих ток материалов. Зачастую применяется стекло или керамика.

Изоляция стенок осуществляется по газодинамическому принципу, поэтому приборы застрахованы от перегрева и могут охлаждаться за счет воздуха.

Комбинированные устройства

Приборы сочетают в себе работу дугового разряда (его горение) и работу токов высокой частоты. Причем в некоторых приборах дуговой разряд дополнительно сжимается благодаря внешнему магнитному полю. Помимо указанного деления приборы подразделяются на виды согласно способу их охлаждения, способу стабилизации электрической дуги и т.д.

Плазменная резка металлов: тройка лидеров

Критерием для определения лучших производителей плазмотронов являются: надежность устройства, его стоимость и вес, а также функциональность.

Сварог CUT 40B (R34) представляет собой превосходное сочетание стоимости аппарата и показателей мощности. Средняя рыночная цена составляет 28 тысяч рублей. Прибор отличается компактными размерами и небольшим весом. Оптимален для разрезания тонколистового металла.

Эргономичная панель управления в сочетании с разъемом для присоединения горелки делают работу с устройством комфортной и простой. Недостатком является ограниченный рабочий ресурс.

Aurora Pro AirForce 60 IGBT – зарекомендовал себя как наиболее энергосберегающий прибор. Цена порядка 40 тысяч рублей. Справляется с разрезанием мягкой стали, алюминия, меди. Благодаря режущему току в 60 А прибор способен справиться с 20-миллиметровой сталью. Минусом является плохая приспособленность к условиям промышленного поточного использования.

Brima CUT 120 идеален для работы с толстым материалом. Стоит прибор порядка 90 тысяч рублей. Если взглянуть на фото плазмотрона, то в глаза сразу бросается небольшой размер трансформатора. Отсюда проистекает и малый вес прибора. Толщина металла, подвергаемого обработке, может доходить до 35 мм. Главный недостаток – чувствительность к влажной среде.

Фото плазмотрона в работе


Также рекомендуем просмотреть:

  • Токарные станки по металлу для дома
  • Споттер своими руками
  • Как сделать аппарат точечной сварки
  • Как собрать простой сварочный аппарат в домашних условиях
  • Стол для сварки своими руками
  • Какие типы сварочных аппаратов бывают
  • Выбор хорошего сварочного провода
  • Инструкция, как залудить жало паяльника
  • Какой сварочный полуавтомат лучше
  • Как выбрать проволоку для сварки
  • Обзор лучших плазменных сварочных аппаратов
  • Технология газовой сварки металлов
  • Горелка для полуавтоматической сварки
  • Обзор лучших сварочных электродов
  • Как выбрать сварочный трансформатор
  • Инверторные сварочные аппараты
  • Обзор лучших масок для сварщика
  • Как выбрать сварочный аппарат для дома
  • Как запаять автомобильный радиатор охлаждения своими руками
  • Современное сварочное оборудование
  • Холодная сварка для металла
  • Ручная дуговая сварка
  • Как выбрать хороший костюм сварщика
  • Как правильно паять паяльником
  • Какой сварочный аппарат лучше для дома
  • Инструкция, как и чем варить алюминий
  • Как научиться варить металл

Помогите сайту, поделитесь в соцсетях 😉

Плазменная резка осуществляется аппаратом под названием плазморез. Он создаёт поток высокотемпературного ионизированного воздуха (плазмы), который разрезает заготовку.

Принцип плазменной резки основан на свойстве воздуха в состоянии ионизации становиться проводником электрического тока.

Плазморез создаёт в плазмотроне плазму (ионизированный воздух, разогретый до высокой температуры) и сварочную дугу, которые осуществляют раскрой материала.

Устройство плазмореза

Плазморез состоит из нескольких блоков:

Устройство плазмореза. Плазменная резка осуществляется плазморезом, который состоит из нескольких блоков

  • источник электропитания;
  • плазмотрон (резак);
  • компрессор;
  • комплект кабель-шлангов (отдельно о шлангах тут).

Источник электропитания

Источником электропитания может быть:

  • трансформатор. Достоинством его является то, что он практически не чувствителен к перепадам напряжения электросети и позволяет резать заготовки большой толщины, а недостатком – значительный вес и низкий КПД;
  • инвертор. Единственным его недостатком является то, что он не позволяет резать заготовки большой толщины. Достоинств много:

    • при питании от него стабильно горит дуга;
    • КПД на 30 % выше, чем у трансформатора;
    • дешевле, экономичнее и легче трансформатора;
    • его удобно использовать в труднодоступных местах.

Плазмотрон

Плазмотрон – это плазменный резак, с помощью которого разрезается заготовка. Он является основным узлом плазмореза.

Конструкция и схема подключения плазмотрона

Конструкция плазмотрона состоит из следующих составляющих:

  • электрод;
  • сопло;
  • охладитель;
  • колпачок.

Компрессор

Компрессор в плазморезе требуется для подачи воздуха. Он должен обеспечивать тангенциальную (или вихревую) подачу сжатого воздуха, которая обеспечит расположение катодного пятна плазменной дуги строго по центру электрода. Если этого не будет обеспечено, то возможны неприятные последствия:

  • плазменная дуга будет гореть нестабильно;
  • могут образоваться одновременно две дуги;
  • плазмотрон может выйти из строя.

Принцип работы

Результат работы плазмотрона

Принцип действия плазмотрона заключается в следующем. Создаётся поток высокотемпературного ионизированного воздуха, электропроводность которого равна электропроводности разрезаемой заготовки (т.е. воздух перестаёт быть изолятором и становится проводником электрического тока).

Образуется электрическая дуга, которая локально разогревает обрабатываемую заготовку: металл плавится и появляется рез. Температура плазмы в этот момент достигает 25000 – 30000 °С. Появляющиеся на поверхности разрезаемой заготовки частички расплавленного металла будут сдуваться с нее потоком воздуха из сопла.

Технология

Технология плазменной резки металла вкратце может быть описана следующим образом. Плазменной обработке поддаются все виды металлов толщиой до 220 мм.

Эффект появляется после воспламенения плазмообразующего газа при образовании искры в контуре электрической дуги (между наконечником форсунки и неплавящимся электродом. От искры загорается поток газа, здесь же он ионизируется, превращаясь в управляемую плазму (с крайне высокой, 800 и даже 2019 м/с скоростью выхода).

В выходном отверстии, от сужения, происходит ускорение потока плазмообразующего носителя. Высокоскоростная плазменная струя позволяет получить температуру на выходе около 20 0000с. Узконаправленная струя в тысячи градусов буквально проплавляет материал в точечной области воздействия, нагрев вокруг места обработки незначительный.

Плазменно-дуговой способ используется с замыканием обрабатываемой поверхности в проводящий контур. Другой вид резки (плазменной струей) — работает при наличии стороннего (косвенного) образования высокотемпературного компонента в рабочей схеме плазмотрона. Нарезаемый металл не включен в проводящий контур

Резка плазменной струей

Раскрой заготовок плазменной струей применяется для обработки материалов, не проводящих электрический ток. При резке этим методом дуга горит между формирующим наконечником плазмотрона и электродом, а сам разрезаемый объект в электрической цепи не участвует. Для разрезания заготовки используется струя плазмы.

Плазменно-дуговая резка

Плазменно-дуговой резке подвергаются токопроводящие материалы. При выполнении резки этим методом дуга горит между разрезаемой заготовкой и электродом, её столб совмещен со струей плазмы. Последняя образуется за счет поступления газа, его нагрева и ионизации. Газ, продуваемый через сопло, обжимает дугу, придает ей проникающие свойства и обеспечивает интенсивное плазмообразование. Высокая температура газа создает высочайшую скорость истечения и увеличивает активное воздействие плазмы на плавящийся металл. Газ выдувает из зоны реза капли металла. Для активизации процесса используется дуга постоянного тока прямой полярности.

Плазменно-дуговая резка применяется при:

  • производстве деталей с прямолинейными и фигурными контурами;
  • вырезании отверстий или проемов в металле;
  • изготовлении заготовок для сварки, штамповки и механической обработки;
  • обработке кромок поковок;
  • резке труб, полос, прутков и профилей;
  • обработке литья.

Виды плазменной резки

В зависимости от среды, существуют три вида плазменной резки:

  • простой. Этот метод подразумевает использование только воздуха (или азота) и электрического тока;
  • с защитным газом. Применяются два вида газа: плазмообразующий и защитный, который сохраняет зону реза от влияний окружающей среды. В результате повышается качество реза;
  • с водой. В этом случае вода выполняет функцию, аналогичную защитному газу. Кроме того, она охлаждает компоненты плазмотрона и поглощает вредные выделения.

Основанная на указанных принципах плазменная резка обеспечивает не только высокопроизводительное производство, но и совершенно пожаробезопасное: применяемые в технологии материалы не огнеопасны.

Видео

Посмотрите ролики, где наглядно объясняется, как происходит плазменная резка:

Принцип работы воздушно-плазменной резки металла

Воздушно-плазменная резка: на чем основан принцип осуществления. Плазма, производящая резку, является разогретым газом с высоким значением электропроводности. Его еще называют ионизованным. Генерируется плазма специальным дуговым элементом. Принято называть этот способ резки плазменным.

Обычная дуга сжимается плазмотроном. Ионизованный газ вдувается в нее, с помощью чего она может генерировать горячий воздух. Она способна производить обработку, при помощи повышенной температуры.Металл разрезается, плавясь при этом.

Осуществление обработки металла происходит благодаря, как плазменной дуге, так и струе. В первом варианте на металлическое изделие оказывается прямое воздействие, во втором — косвенное. Наиболее распространенным и действенным является метод резки с помощью действия напрямую. Для материала, который не обладает электропроводностью (как правило это неметаллические изделия) применяют способ непрямого влияния. При любом из вариантов разрезаемый материал не теряет агрегатного состояния и его конструкция слабо подвергается деформации.

Принцип работы плазменного резака

Плазмотрон – это техническое устройство, которое образует электрический разряд между электродом (катодом) и поверхностью обрабатываемого изделия (анодом), это происходит в потоке газа который образует плазму.

Принцип работы устройства: для охлаждения применяется вода или газ, для получения плазмы используется плазмообразующий газ. Поток входящего в камеру газа подвергается нагреванию до высоких температур после чего ионизируется, тем самым приобретает свойства плазмы. Плазмообразующий газ и охлаждающий подаются в различные каналы плазматрона. При подаче питания между катодом и соплом образуется так называемый вспомогательный разряд, визуально её можно видеть как небольшой факел.

Основная (рабочая дуга) образуется при касании второстепенного разряда обрабатываемой поверхности, которая в данном случае выполняет роль анода (плюс). Стабилизация разряда может осуществляться магнитным полем, водой либо газом, зачастую стабилизирующий газ является и плазмообразующим. После этого можно проводить резку материала, нанесение покрытий, сварку, наплавку или даже добычу полезных ископаемых, путём разрушения горных пород.

Условно конструкцию плазмотрона можно представить как несколько основных элементов:

  1. изолятор;
  2. электрод;
  3. сопло;
  4. механизм для подвода плазмообразующего газа;
  5. дуговая камера.

Конструкция и принцип работы плазмотрона с совмещенным соплом и каналом

Особенностью плазмотрона, использующего воздушно-плазменную резку является совмещение канала и сопла. Воздух проходит через канал сопла наружу. Принцип работы схож, при подаче электропитания промеж катодом и соплом образуется вспомогательный разряд. Воздух закрученный по спирали, стабилизирует и сжимает столб рабочего разряда. Он же предотвращает соприкосновение электрической дуги стенок соплового канала.

Типы плазмотронов

Плазмотроны можно условно разделить на три глобальных типа

  1. электродуговые;
  2. высокочастотные;
  3. комбинированные.

Устройства работающие на основе электрической дуги оснащены одним катодом, который подключен к источнику питания постоянного тока. Для охлаждения применяют воду, которая находится в охладительных каналах.

Можно выделить следующие виды электродуговых аппаратов

  • с прямой дугой;
  • косвенной дугой (плазмотроны косвенного действия);
  • с использованием электролитического электрода;
  • вращающимися электродами;
  • вращающейся дугой.

Автомат: принцип работы

Станок плазменной автоматической резки имеет:

  1. пульт управления,
  2. плазмотрон
  3. рабочий стол для заготовок.

Автомат для резки (Китай)
Источник фото: ru.made-in-china.com

На пульте управления происходит корректировка предварительно установленных программ, если резка отклоняется от установленных параметров. Для оперативного исправления в процессе работы и выбора оптимальных режимов резания.

Через установленный на рабочем столе лист, пропускается электрический ток. Между поверхностью листа и плазмотроном пробегает первичная электродуга. В которой сжатый воздух, разогревается до состояния плазмы. Первичная дуга скрывается в раскаленной ионизированной струе, которая и режет металла.

Резка начинается с середины или с края. Чем чаще происходит прерывание дуги и зажигание новой искры, тем меньше становится ресурс сопла и катода. Грамотный оператор автоматической резки выбирает режимы резания по таблице и отталкиваясь от конкретных условий (толщина металла, диаметр сопла). Благодаря чему можно добиться значительного сокращения расходов. По окончанию операции, автомат самостоятельно оповестит оператора, выключит и отведет плазмотрон от материала.

Какие газы используются, их особенности

Плазменная резка металла представляет собой процесс проплавления и удаления расплава за счет теплоты, получаемой от плазменной дуги. Скорость и качество резки определяются плазмообразующей средой. Также, плазмообразующая среда влияет на глубину газонасыщенного слоя и характер физико-химических процессов на кромках среза. При обработке алюминия, меди и сплавов, изготовленных на их основе, используются следующие плазмообразующие газы:

  • Сжатый воздух;
  • Кислород;
  • Азотно-кислородная смесь;
  • Азот;
  • Аргоно-водородная смесь.

ВАЖНО! Для некоторых марок металла недопустимо применение определенных плазмообразующих смесей (к примеру, для резки титана нельзя использовать смеси, содержащие в составе азот или водород).

Все газы, используемые при выполнении плазменной обработки, условно делятся на защитные и плазмообразующие.

В целях бытового назначения (толщина до 50 мм, сила тока дуги – менее 200 А) применяется сжатый воздух, который может использоваться как защитный, так и плазмообразующий газ, а в более сложных условиях промышленного назначения применяются другие газовые смеси, которые содержат кислород, азот, аргон, гелий или водород.

Достоинства и недостатки плазменной резки

Обработка металлов аппаратами или станками плазменной резки дает в работе целый ряд преимуществ.

  1. По сравнению с кислородной горелкой, плазморез обладает более высокой мощностью, и соответственно, производительностью, и по данному параметру уступает только лазерным установкам промышленного масштаба.
  2. Плазменная резка выгодна с экономической точки зрения при толщине металла до 60 мм. Для резки материалов с толщиной более 60 мм рекомендуется использовать кислородную резку.
  3. Современные плазморезы отличаются высокоточной и качественной обработкой металлов. Срез получается «чистый», с минимальной шириной, благодаря чему, практически не требует дополнительной шлифовки.
  4. Также, плазменно-дуговая обработка характеризуется универсальностью применения, безопасностью и низким уровнем загрязнения окружающей среды.

Из недостатков можно отметить скромную толщину среза (до 100 мм), а также невозможность одновременной работы двух плазморезов и соблюдение жестких требований к отклонениям от перпендикулярности среза.

Возможности плазменной резки

Сфера применения плазменной резки очень разнообразна, благодаря своей универсальности и диапазону обрабатываемых металлов и металлических сплавов. Автоматизированная и ручная плазменная резка материалов широко применяется на предприятиях и во многих отраслях промышленности для выполнения обработки:

  • Труб;
  • Листового металла;
  • Чугуна;
  • Стали (в т.ч. нержавеющей);
  • Бетона;
  • Отверстий;
  • Фигурной и художественной резки.

Характеристики плазморезов позволяют выполнять обработку нержавеющей стали, что недоступно кислородным горелкам. Плазморезы практически незаменимы для обработки тонкой листовой стали. Особого внимания заслуживают ручные устройства, которые отличаются компактными размерами и экономичным потреблением электроэнергии. Технология плазменно-дуговой резки особенно ценится за выполнение чистого среза без «наплывов», что положительно влияет на скорость и точность выполнения работ, а также на производственные возможности предприятий.

Полезная информация по теме

Технология плазменной резки широко используется при обработке тугоплавких токопроводящих металлов. Разрезание материала происходит при помощи плазмы, которая создается ионизированным газом, что и позволяет обеспечить максимальную производительность проводимых работ. Используемые сегодня станки для плазменной резки позволяют обеспечить максимально возможное качество такой работы, при этом имеется возможность обработки тугоплавких металлов, которые сложно разрезать при помощи обычных ручных аппаратов.

Используемые сегодня установки для резки плазмой отличаются компактностью конструкции, при этом они управляются электроникой и автоматикой, что позволяет задать программу резки, и в последующем обеспечить ее великолепное качество. В отличие от механических способов разрезания металла плазмотроны способны работать по любым рисункам, при этом существенно уменьшается деформация поверхности, которая вызвана перегревом.

Имеется возможность использования дополнительных насадок на плазмотроны, что, в свою очередь, защищает сопло от брызг расплавленного материала. А также обеспечивается возможность уменьшения толщины луча плазма, улучшение качества резки и минимизация отходов.

Принцип работы плазмореза

Резка металла плазмой основана на принципе усиления электрической дуги за счёт разгона газа, который выдвигается из сопла под высоким давлением. Такая усиленная электрическая дуга и пропущенный через неё газ создает плазму, температура которой может достигать 30 000 градусов и выше. Подобная эффективность обеспечивает минимальный прогрев металла, что исключает его деформацию при разрезании.

Принцип работы плазменной резки металла следующий:

  1. Трансформаторные или инверторные установки, а для бытовых моделей используется ток 220 вольт или же 380 вольт для мощного промышленного оборудование, выдают необходимое напряжение.
  2. Используемый ток передается в горелку плазмотрона, в которой друг против друга располагаются анод и катод. Между этими электродами загорается мощная электрическая дуга.
  3. В сопло из воздушного компрессора подается газ, повышающий температуру дуги приблизительно до 20 000 градусов.
  4. Под воздействием электрической дуги используемый газ ионизируется, превращаясь в струю плазмы с температурой в 30 000 градусов.

Плазменная струя отличается ярким свечением, скорость ее выхода из сопла составляет приблизительно 2019 метров в секунду, а за счёт высокой теплопроводности она может с легкостью разрезать металл. Металл разогревается локально и его расплавление отмечается лишь в зоне обработки без термической деформации близлежащих участков.

В зависимости от используемого оборудования и конкретных условий обработки материалов может использоваться следующий газ:

  • Аргон.
  • Водород.
  • Азот.
  • Технический кислород.
  • Обычный воздух.

Для повышения качества резки металла необходимо удалять из зоны обработки расплавленные частицы и охлаждать сопло оборудования. Для этого в рабочую зону подается дополнительный поток жидкости или газа, что позволяет обеспечить полную работоспособность оборудования.

Современные установки для плазменной резки

Наибольшее распространение сегодня получили аппараты газоплазменной резки с компьютерным управлением, которые используются на предприятиях в различных отраслях промышленности. С помощью таких установок может разрезаться плазмой не только тугоплавкий металл, но и натуральный камень, пластик и другие материалы. Благодаря своей универсальности такое оборудование широко используется на ремонтных и рекламных предприятиях, судостроительных и машиностроительных заводах, в коммунальной сфере и так далее.

Также широкое распространение получили компактные установки плазменной резки, которые отличаются мобильностью, что позволяет с легкостью переносить с места на место такое оборудование и при необходимости выполнять соответствующую резку металла. Такие компактные установки могут быть как полностью ручными, так и полуавтоматами, где часть работ контролируется компьютером.

На сегодняшний день наибольшее распространение получили два типа аппаратов плазменной резки:

  • Прямого действия, в которых резка плазмой осуществляется контактным способом.
  • Плазморезки косвенного действия, которые работают бесконтактным способом.

Контактные аппараты прямого действия используются в бытовых целях, они сочетают компактность и простоту эксплуатации. А вот установки косвенного действия, как правило, управляются автоматикой и отличаются сложностью конструкции.

Большой популярностью пользуются плазменные резаки, в которых электроток получается за счет использования соответствующего инвертора с компактными габаритами. Рабочий ток от инвертора отличается не только необходимой мощности, но и имеет ровные параметры, соответственно обеспечивается великолепное качество разрезания металла.

Бытовые ручные аппараты для воздушно-плазменной резки сочетают универсальность использования и способны с легкостью работать с металлами толщиной до 12 миллиметров. А вот промышленные установки могут работать от одного или нескольких инверторов, что позволяет применять их для разрезания металлических изделий толщиной в 20−30 миллиметров и более. Отдельные промышленные установки благодаря своей улучшенной мощности способны с легкостью разрезать металл толщиной 100 миллиметров.

Преимущества технологии плазменной резки

Если говорить о преимуществах данной технологии обработки металла, то можем отметить следующее:

  • Высокая точность разрезания металла.
  • Возможность выполнения фигурной формы реза.
  • Простота рабочего процесса.
  • Отличная скорость проводимых работ.
  • Возможность работы с металлами, которые не проводят металлический ток.
  • С помощью плазмореза можно работать с металлом, пластиком, камнем.
  • Мобильность оборудование.
  • Безопасность сварщика ввиду отсутствия необходимости использования газовых баллонов.
  • Минимальное загрязнение окружающей среды.
  • Не требуется в последующем обрабатывать разрезанные поверхности.

Изобретение технологии резки плазмой позволило существенно упростить работу с легированной сталью. Благодаря глубокой степени автоматизации такого оборудования удаётся выполнять изогнутые линии, а весь производственный процесс максимально автоматизирован. Причём использование таких плазморезов не представляет какой-либо сложности и минимизирует время, необходимое на обучение работе с таким оборудованием.

Что такое плазменная резка металла, технология процесса и критерии подбора аппаратов – об этом пойдёт речь в обзоре редакции HouseChief. Благодаря высокой точности и аккуратности получаемого результата, именно этот способ раскроя металла выходит на первый план. Тем более, на рынке строительных товаров появились бытовые аппараты подобного назначения, доступные непрофессионалам. Как выбрать такой аппарат? По каким критериям различаются модели? Обо всём этом и многом другом – в нашем материале.

Плазменная резка отличается высокой точностью и аккуратным разрезом

Что такое плазменная резка металла, технология процесса

Если объяснять эту технологию простыми словами, то плазменная резка – это процесс нагрева металла струёй плазмы. Для выполнения такой задачи используют специальный аппарат – плазморез. Он формирует высокотемпературную электродугу, которая располагается между соплом резака и материалом. Температура дуги достигает 5000ºС. Но её недостаточно для эффективной резки металла, так что дополнительно в рабочую область подаётся газ, который формирует плазму с температурой до 30000ºС.

Плазма ярко светится, скорость её выхода из сопла достигает 2019 м/с. Вместе всё это и режет металл, как горячий нож масло

Для чего можно использовать плазморезку

Плазменная резка востребована во многих отраслях. Между прочим, она используется не только для металлических деталей, но и для обработки пластика и камня.

Этот вид резки востребован в машиностроении, коммунальном хозяйстве и строительных работах

Плазморезкой можно кроить практически все металлы, с учётом их особенностей. Отличные результаты даёт резка низкоуглеродистых сталей. Именно по ним и рассчитываются стандартные параметры эффективности устройства. Высокоуглеродистые и легированные стали требуют усложнённого подхода с дополнительными настройками и режимами.

Цветные металлы режут с помощью смеси газов, состоящей из аргона, азота и водорода. Здесь важна высокая технологичность процесса и предельная аккуратность для устранения потерь в процессе работы

Важное о плазматроне

Задача плазматрона – объединить электродугу и газ в плазму. Для этой цели в приборе есть небольшое отверстие – сопло, через которое поступает газ. В бытовых приборах оно управляется вручную, держать его следует на весу, что усложняет процедуру раскроя. Отсутствие опыта такой работы приводит к появлению оплавленных краёв и неровностей.

Чтобы повысить качество обработки, можно воспользоваться различными приспособлениями в виде подставок и шаблонов

Для работы резака со сталью используют азот или воздух. Чтобы выдувать оплавленный метал из шва, газ должен направляться в сопло под давлением. Для этого его закачивают в ёмкости, которые и подключаются к плазморезке.

Какие газы используются в плазморезке

Для образования плазмы могут использоваться разные газовые смеси.

  1. Воздушно-плазменная резка предполагает применение воздуха. Так можно обрабатывать чёрные металлы, нержавеющую сталь, латунные и медные детали.
  2. Кислородная резка. Этот газ применяют в профессиональном инструменте, который позволяет быстро и качественно кроить металлические листы.
  3. Защитные газы. Резаки с такими видами смесей используется, в том числе в ювелирном деле, так как дают высокое качество реза. Установки с использованием защитных газов стоят до 12 миллионов рублей.

При работе с кислородом образуется минимальное количество оплавленного шлака

Плюсы и минусы плазменной резки

Чтобы определиться с достоинствами и недостатками плазмореза, нужно сравнить его работу с ближайшими конкурентами: лазерным, гидроабразивным и кислородно-газовым резаками. В результате сравнения можно отметить такие положительные параметры:

  • способность резки листов до 50 мм толщиной;
  • возможность обработки любых видов металлов: от чёрных до цветных;
  • высокую точность реза;
  • скорость работы до 7 м/мин.;
  • мобильность приборов с ручным управлением;
  • минимальное количество шлака и оплава.

Но вместе с тем, присутствуют и сложности, о которых следует знать:

  • сами аппараты и расходники к ним стоят довольно дорого;
  • конусность реза минимальна.

Приборы для плазменной резки

На прилавках специализированных магазинов вы встретите приборы двух типов: для бесконтактной и контактной резки.

Бесконтактная резка используется для обработки пластика и натурального камня. В таких устройствах плазма образуется между соплом и электродом.

Бесконтактная резка используется для обработки пластика и натурального камня

Контактная обработка подразумевает непосредственное соприкосновение электродуги с металлом. Именно такие устройства обычно приобретают для бытовых нужд.

Автоматические устройства

Такие приборы можно встретить на промышленных предприятиях. Они управляются с помощью компьютеризированных систем и позволяют точно кроить серийные листовые детали толщиной до 7 см. Обычно это очень мощные агрегаты, которые питаются от сети в 380 В.

Стоимость подобных агрегатов – от миллиона рублей и выше

Ручные резаки

Устройства с ручным управлением мобильны и довольно компактны. Они состоят из самого плазмотрона, шланга, трансформаторного блока и выпрямительной подстанции.

Работа с такими аппаратами может происходить в двух направлениях:

  • косвенной, бесконтактной резки струёй плазмы. Этот принцип используется для неметаллических поверхностей;
  • прямой контактной резки для металлических деталей.

Такие устройства используются не только в быту, но и на предприятиях, осуществляющих металлообработку

Вес таких приборов редко превышает 25 кг, работают они от сети с обычным напряжением в 220 В. Подобные устройства универсальны и стоят от 15 тысяч рублей.

Источники питания плазматрона

Не все приборы для ручной резки работают от переменного тока. Некоторые резцы могут иметь преобразователи и усилители. Но КПД у них ниже, чем у инструментов, получающих питание постоянным током. Получается, что только такие приборы являются универсальными для резки любых изделий.

Для цветных металлов, температура плавления которых ниже стали, достаточно использования резака с инвертором. Это самый оптимальный выход, позволяющий работать в мобильном режиме

Трансформаторы весят гораздо больше, но и мощность выдают соответствующую. Они не дают сбои при перепадах напряжения. Плюс трансформаторы можно использовать постоянно, не делая перерывы на остывание. Но и счётчик электроэнергии при этом мотает киловатты с космической скоростью.

Критерии выбора плазматрона

На что следует обратить внимание при выборе инструмента? Вот существенные критерии:

  1. Универсальность модели. Обратите внимание на аббревиатуры в наименовании: CUT – только для металлов,  TIG – аргонодуговая сварка и  MMA – использование штучных электродов.
  2. Наличие инвертора или трансформатора в качестве источника питания. Трансформаторный более мощный, инверторный – лёгкий.
  3. Контактная или бесконтактная резка. Бесконтактные модели, как правило, более мощные.
  4. Бытовое и промышленное назначение. Разница не только в стоимости и габаритах, но и в вольтаже подключаемой сети.
  5. Максимально возможная толщина обработки металлов. Она зависит от мощности прибора. Для резки 1 мм толщины нержавейки и чёрных металлов нужна сила тока в 4 А, для цветных металлов – 6 А.
  6. Длительность рабочего цикла. Этот параметр указывается в технических характеристиках изделия и считается в процентах. Например, показатель в 60% означает, что после 6 минут работы нужно дать прибору отдыхать 4 минуты. 100% показатель имеют модели трансформаторного типа. Во многих из них для охлаждения используется водяной контур.
  7. Наличие встроенного или наружного компрессора. Встроенные варианты не отличаются мощностью, так что их чаще можно встретить в качестве бытовых приборов. Они более компактны.
  8. Удобство пользования. Этот фактор формируется из длины шланга, и чем он длиннее, тем проще работать с прибором. Но слишком длинные шланги приводят к падению мощности.

Лучше брать прибор с запасом мощностиЕсли есть необходимость в длительной и непрерывной работе, лучше выбирать внешний компрессор

Практика использования плазменного резака и требования безопасности

Плазморез – потенциально опасный инструмент, так как использует электродугу и производит высокотемпературную плазму. По этой причине резаком не работают при отрицательных температурах. Не стоит браться за прибор при отсутствии опыта. Особенно важно следить за износом сопла и электродов. Их несвоевременная смена может привести к печальным последствиям.

Как работать плазменной резкой – в этом видеокурсе:

А у вас есть опыт работы плазменным резаком? Какую модель аппарата вы предпочитаете? Напишите об этом в комментариях!

Спасибо!

В ближайшее время мы опубликуем информацию.